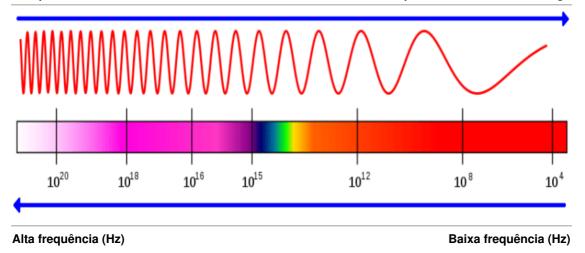

Comunicações sem-fios

Uma grande e crescente parte da tecnologia das comunicações está a tornar-se sem-fios. À medida que mais e mais processos se tornam sem-fios, mais complexas se tornam as infraestruturas que os rodeiam. A compreensão dos princípios básicos da comunicação sem-fios está a tornar-se importante para o utilizador médio.

Radiação eletromagnética

Todas as formas de comunicação sem-fios dependem do que é conhecido como "radiação eletromagnética" A radiação eletromagnética refere-se a ondas de energia no campo eletromagnético, que transportam - ou propagam - energia radiante eletromagnética através do espaço tridimensional. Embora o termo "radiação" tenha conotações negativas no uso comum, utilizado aqui implica simplesmente que uma única fonte pontual está a emitir - ou a irradiar - energia. A radiação eletromagnética não é necessariamente prejudicial para os seres humanos mas, em certas frequências e em quantidades suficientes, pode ser.


Os observadores entendem a radiação eletromagnética numa variedade de formatos; tanto as ondas de rádio como as ondas de luz são formas de radiação eletromagnética, apenas têm comprimentos de onda diferentes e estão em diferentes partes do espetro.

Num vácuo, toda a radiação eletromagnética viaja à mesma velocidade - a velocidade da luz. À medida que as ondas eletromagnéticas percorrem diferentes substâncias, a sua velocidade e/ou capacidade de transmissão começa a mudar com base nas propriedades da matéria física e no próprio comprimento de onda da radiação eletromagnética. Por exemplo, tanto a luz como as ondas de rádio são capazes de passar através da atmosfera terrestre, mas apenas as ondas de rádio podem passar através das paredes de um edifício, uma vez que a luz ressalta na estrutura sólida. Em qualquer situação em que a radiação eletromagnética interage com qualquer forma de matéria, a radiação perderá sempre pelo menos alguma da sua força, uma vez que as ondas eletromagnéticas interagem com as moléculas da própria matéria física.

Comprimento de onda e frequência

Na radiação eletromagnética, existe uma relação direta entre energia, comprimento de onda e frequência. Quanto mais curto o comprimento de onda, mais curto o período entre os picos de duas ondas. Como toda a radiação eletromagnética viaja à mesma velocidade, à medida que o comprimento de onda se torna mais curto, a frequência relativa da onda aumenta, à medida que o período entre os picos de duas ondas se torna mais curto. À medida que a frequência aumenta, mais energia é transmitida durante o mesmo período de tempo, o que significa que comprimentos de onda mais curtos com frequências mais altas parecem ser mais energéticos quando recebidos de um ponto de vista relativo.

Tamanho/estrutura da antena

Como existe uma relação direta entre comprimento de onda, frequência de onda e energia de onda, existe também uma correlação direta entre o comprimento de onda e o tamanho da antena necessária para transmitir/receber um sinal. Na prática, isto significa que quanto maior for a frequência de um sinal, menor necessita de ser a antena recetora, sendo as implicações que as ondas de rádio no extremo inferior da frequência de transmissão irão exigir antenas significativamente maiores. Para as agências humanitárias, existem compromissos do mundo real entre a utilidade de uma determinada banda de transmissão e o tamanho que pode ter o seu equipamento de receção de rádio.

Propagação por rádio

A velocidade de propagação é definida como o tempo que demora a uma coisa se deslocar para outra. A velocidade de propagação por rádio no vácuo é a velocidade da luz, e esta velocidade pode ser afetada pela passagem através de uma variedade de meios transparentes ou semitransparentes.

Adicionalmente, à medida que diferentes comprimentos de onda da radiação eletromagnética se deslocam através de qualquer meio transparente, existem formas subtis e muito específicas em que são alterados ou interagem com esse meio, que são governadas por uma variedade de fatores. Quando se trata de utilizar sinais de rádio ou micro-ondas dentro da atmosfera terrestre, existem modos de propagação que têm impacto na comunicação.

Propagação pela linha de visão — Propagação pela linha de visão significa que os sinais de rádio só podem ser recebidos e transmitidos com sucesso se não houver qualquer objeto grande a bloquear o caminho entre os dois. A propagação pela linha de visão não significa que o transmissor e o recetor tenham de ser capazes de se ver um ao outro - tal como um satélite em órbita da Terra - nem significa que tenha de haver espaço completamente aberto entre dois objetos - tal como um rádio VHF a funcionar dentro de uma estrutura com paredes radiotransparentes. A propagação pela linha de visão é importante porque colinas, grandes estruturas, e mesmo a curvatura da terra limitarão até onde um sinal na linha de visão pode ir. A maioria dos dispositivos de comunicação por rádio VHF/UHF e microondas são limitados por este método de propagação.

Propagação por ondas terrestres — As ondas de rádio podem ser propagadas usando o que se chama onda terrestre ou "ondas de superfície". A propagação por ondas terrestres envolve ondas de rádio que se movem ao longo da superfície da terra e ressaltam em estruturas sólidas, tais como colinas ou edifícios. As comunicações VHF e UHF podem beneficiar um pouco da propagação de ondas terrestres, mas geralmente apenas os sinais de frequências mais elevadas beneficiam da propagação de ondas terrestres.

Propagação por ondas do céu – As ondas de rádio HF na atmosfera terrestre propagam-se usando a propagação por ondas do céu. A propagação por ondas do céu permite que os sinais transmitidos ao

longo de porções da frequência HF ressaltem na ionosfera terrestre e oscilem dentro da atmosfera terrestre muito para além do horizonte. As ondas do céu são capazes de seguir a curvatura da superfície da terra, por vezes a grandes distâncias; no entanto as distâncias são impactadas por uma série complexa de fatores ambientais.

Na prática, todo o espetro de ondas de rádio interage com o seu ambiente de muitas formas diferentes, o que significa que podem ser possíveis múltiplas formas de propagação.

- Absorvida As ondas de rádio são absorvidas e neutralizadas por grandes objetos estacionários como edifícios.
- Refratada À medida que as ondas de rádio passam por qualquer meio de densidade variável, o seu curso pode ser alterado.
- **Reflexão** As ondas de rádio ressaltam em objetos estacionários ou sólidos, enviando sinais numa nova direção.
- **Difração** A tendência para as ondas de rádio se curvarem em direção a objetos de grande dimensão à medida que estes passam por cima/através de objetos.

Os efeitos combinados destes diferentes efeitos criam o que é conhecido como propagação multicaminhos. A propagação multicaminhos resulta, na prática, na receção de sinais de formas aparentemente aleatórias ou inconsistentes. É por isso que a força do sinal pode ser aumentada ou diminuída movendo um ou alguns metros numa direção ou noutra, e o que pode criar zonas mortas para a comunicação via rádio.